Search results for "Material Science"

showing 7 items of 7 documents

Growth of low-density vertical quantum dot molecules with control in energy emission

2010

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License.-- This article is part of the series 8th International Workshop on Epitaxial Semiconductors on Patterned Substrates and Novel Index Surfaces.

NanostructureMaterials scienceNanochemistryNanotechnologyEpitaxyCondensed Matter::Materials ScienceMaterials Science(all)lcsh:TA401-492NanotechnologyMoleculeGeneral Materials ScienceChemistry/Food Science generalMaterial Sciencebusiness.industryQuantum dotsEngineering GeneralSpecial Issue ArticleMaterials Science generalCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsPhysics General8th International Workshop on Epitaxial Semiconductors on Patterned Substrates and Novel Index SurfacesQuantum dotMolecular MedicineOptoelectronicslcsh:Materials of engineering and construction. Mechanics of materialsPhotonicsbusinessDroplet epitaxyLayer (electronics)Molecular beam epitaxyMolecular beam epitaxy
researchProduct

Two-Dimensional Carbon: A Review of Synthesis Methods, and Electronic, Optical, and Vibrational Properties of Single-Layer Graphene

2019

Graphite has been widely used by humans for a large part of their history. Nevertheless, it has only recently been possible to isolate its basic unit: carbon atoms arranged in a honeycomb structure on a single plane, namely graphene. Since its discovery, many techniques have been developed and improved to properly synthesize graphene and its derivatives which are part of the novel class of two-dimensional materials. These advanced materials have imposed themselves in nanotechnology thanks to some outstanding physical properties due to their reduced dimensions. In the case of graphene, its reduced dimension gives rise to a high electrical mobility, a large thermal conductivity, a high mechan…

Solid-state physics2D materialNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesNanomaterialslaw.inventionlcsh:QD241-441symbols.namesakeThermal conductivitylcsh:Organic chemistrylawGraphiteSpectroscopyGraphenecarbongrapheneGeneral Medicine021001 nanoscience & nanotechnologymaterial science0104 chemical sciencesHoneycomb structureRaman spectroscopysymbolsnanomaterial0210 nano-technologyRaman spectroscopy
researchProduct

Surface Modification of Porous Polyethylene Implants with an Albumin-Based Nanocarrier-Release System

2021

Background: Porous polyethylene (PPE) implants are used for the reconstruction of tissue defects but have a risk of rejection in case of insufficient ingrowth into the host tissue. Various growth factors can promote implant ingrowth, yet a long-term gradient is a prerequisite for the mediation of these effects. As modification of the implant surface with nanocarriers may facilitate a long-term gradient by sustained factor release, implants modified with crosslinked albumin nanocarriers were evaluated in vivo. Methods: Nanocarriers from murine serum albumin (MSA) were prepared by an inverse miniemulsion technique encapsulating either a low- or high-molar mass fluorescent cargo. PPE implants …

biologyChemistryQH301-705.5release kineticsSerum albuminbiomaterialMedicine (miscellaneous)Biomaterialfluorescence microscopyGeneral Biochemistry Genetics and Molecular BiologyArticlematerial scienceMiniemulsionTissue engineeringIn vivoporous polyethylenetissue engineeringbiology.proteinSurface modificationImplantNanocarriersBiology (General)dorsal skinfold chamberalbumin nanocarriersBiomedical engineeringBiomedicines
researchProduct

Applications of fast field cycling NMR relaxometry

2021

Abstract Fast field cycling (FFC) NMR relaxometry is emerging as a powerful tool to investigate physical chemistry properties of many systems in a number of different scientific fields. As an example, it is used to investigate environmental issues such as soil erosion, water, and nutrient dynamics in environmentally relevant porous systems, to discriminate among different kinds of foodstuff in order to understand possible source of adulteration and fraud, to evaluate the properties of new materials, and much more. In the present study, an overview about the possible applications of FFC NMR relaxometry is given. The paper is not intended to be exhaustive. Rather, it is thought to provide an …

Food scienceSoil scienceWater scienceRelaxometryField cyclingComputer scienceSettore AGR/13 - Chimica AgrariaNew materialsSediment scienceBiochemical engineeringMaterial scienceFFC NMR relaxometry
researchProduct

Research of new composite materials for hydrogen storage

2007

Material ScienceFizikaMateriālu fizika
researchProduct

Dynamic modification of Fermi energy in single-layer graphene by photoinduced electron transfer from carbon dots

2020

Graphene (Gr)&mdash

Materials scienceGeneral Chemical Engineeringchemistry.chemical_element2D materialPhotoinduced electron transferArticleNanomaterialslaw.inventionlcsh:Chemistrysymbols.namesakelawGeneral Materials ScienceSurface statesGraphenecarbonFermi energymaterial sciencePhotoexcitationlcsh:QD1-999chemistryChemical physicsRaman spectroscopysymbolsnanomaterialGrapheneRaman spectroscopyCarbon
researchProduct

Free energy and states of fractional-order hereditariness

2014

AbstractComplex materials, often encountered in recent engineering and material sciences applications, show no complete separations between solid and fluid phases. This aspect is reflected in the continuous relaxation time spectra recorded in cyclic load tests. As a consequence the material free energy cannot be defined in a unique manner yielding a significative lack of knowledge of the maximum recoverable work that can extracted from the material. The non-uniqueness of the free energy function is removed in the paper for power-laws relaxation/creep function by using a recently proposed mechanical analogue to fractional-order hereditariness.

Work (thermodynamics)Materials scienceMaterial stateFractional orderMaterial scienceSpectral lineDissipation rateMaterials Science(all)Modelling and SimulationGeneral Materials ScienceComplex materials; Continuous relaxation; Dissipation rates; Fractional derivatives; Fractional order; Free energy function; Material science; Power law creepFree energyPower-law creep/relaxationComplex materialbusiness.industryMechanical EngineeringApplied MathematicsRelaxation (NMR)Order (ring theory)Free energy functionFractional derivativesStructural engineeringFunction (mathematics)MechanicsFractional derivativeCondensed Matter PhysicsFractional calculusContinuous relaxationCreepMechanics of MaterialsModeling and SimulationPower law creepbusinessSettore ICAR/08 - Scienza Delle CostruzioniEnergy (signal processing)International Journal of Solids and Structures
researchProduct